Light Scattering from Glass-forming Molten Salts

A. G. Kalampounias^{a,b}, G. N. Papatheodorou^{a,b}, and S. N. Yannopoulos^a

^a Foundation for Research and Technology Hellas – Institute of Chemical Engineering and High Temperature Chemical Processes, P.O. Box 1414, GR-26500 Patras, Greece
^b Department of Chemical Engineering, University of Patras, GR-26500, Patras, Greece

Reprint requests to Dr. S. N. Y; Fax: +30 61 965 223, E-mail: sny@iceht.forth.gr

Z. Naturforsch. **57 a,** 65–70 (2002); received August 20, 2001

Presented at the NATO Advanced Study Institute, Kas, Turkey, May 4 - 14, 2001.

Raman scattering has been employed to study the temperature and polarization dependence of the vibrational modes for the glass-forming halide salt mixtures $x\text{ZnC}_2$ - $(1-x)\text{AlCl}_3$, with x=0.8 and 0.6. The analysis has shown that the vibrational modes of the mixtures arise from a contribution of the vibrational modes of the pure components salts. Emphasis has also been given to the low-frequency modes $(3-80 \text{ cm}^{-1})$, and particular points related to the glass transition phenomenology are discussed in view of the experimental findings.

Key words: Halide Glasses; Molten Salts; Raman Scattering; Glass Transition; Boson Peak.